Shade the bar models to represent the fractions.
a) Shade $\frac{1}{2}$ of the bar model.

b) Shade $\frac{2}{4}$ of the bar model.

c) Shade $\frac{3}{6}$ of the bar model.

d) What do you notice?
e) Write another fraction that is equivalent to $\frac{1}{2}$
(2) Shade $\frac{2}{3}$ of each bar model.
a)

b)

c)

d) Use your answers to parts a), b) and c) to complete the equivalent fractions.

$$
\frac{2}{3}=\frac{\square}{6}=\frac{8}{\square}=\frac{\square}{15}
$$

Mo is finding equivalent fractions.

Do you agree with Mo? \qquad
Explain your answer.
(4) Find the missing numbers.

5 Here is a number line.

a) What fraction is each shape pointing to?

b) A circle is halfway between the triangle and the square. Draw the circle on the number line.
c)

Do you agree with Eva? \qquad
Show how you worked this out.
d) Write three equivalent fractions for each shape.

Compare answers with a partner.

Shade the bar models to represent the equivalent fractions.
a)

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$\frac{1}{2}=\frac{3}{6}$
b)

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \frac{1}{10} & \frac{1}{10} \\
\hline
\end{array}
$$

c)

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \frac{1}{10} & \frac{1}{10} \\
\hline
\end{array}
$$

d) | $\frac{1}{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

2) Use the fraction wall to complete the equivalent fractions.

$\frac{1}{2}$				$\frac{1}{2}$			
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{8}$							

a) $\frac{1}{2}=\frac{\square}{4}$
c) $\frac{2}{4}=\frac{4}{\square}$
e)
$\frac{\square}{8}=\frac{3}{4}$
b) $\frac{1}{2}=\frac{\square}{8}$
d) $\frac{2}{8}=\frac{\square}{4}$
f) $\frac{2}{2}=\frac{\square}{4}=\frac{\square}{8}$
a) Label the fractions on the fraction wall.

b) Use the fraction wall to complete the equivalent fractions.

$$
\begin{aligned}
& \frac{1}{3}=\frac{\square}{6}=\frac{3}{\square \square} \\
& \frac{3}{\square}=\frac{6}{\square}=\frac{\square}{\square}=1
\end{aligned}
$$Here is a fraction wall.

$\frac{1}{2}$			1			
$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$		
$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$
$\frac{1}{5}$	$\frac{1}{5}$			$\frac{1}{5}$		$\frac{1}{5}$
$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$

Is each statement true or false? Tick your answers.
a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$
b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$
c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$
d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$
e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$
f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.
Ask a partner to say if they are true or false.

Are the statements always, sometimes or never true?
Circle your answer.
Draw a diagram to support your answer.
a) The greater the numerator, the greater the fraction.

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

Shade the diagrams to help you complete the equivalent fractions.

The first one has been done for you.

$$
\frac{1}{3}=\frac{2}{6}
$$

b)

(2) Draw a diagram to show that $\frac{3}{4}=\frac{6}{8}$

c) $\frac{3}{10}=\frac{6}{\square}$
f) $\frac{8}{12}=\frac{\square}{3}$

a) $\frac{1}{5}=\frac{\square}{10}$
d) $\frac{3}{10}=\frac{9}{\square}$
g) $\frac{8}{12}=\frac{2}{\square}$
b) $\frac{4}{5}=\frac{\square}{10}$
e) $\frac{6}{8}=\frac{3}{\square}$
h) $\frac{2}{\square}=\frac{10}{25}$a) Write the fractions in the correct place on the sorting diagram.

$\frac{8}{24}$	$\frac{3}{12}$	$\frac{5}{15}$	$\frac{6}{24}$	$\frac{4}{12}$	$\frac{9}{36}$	$\frac{3}{9}$	$\frac{4}{16}$

	equivalent to $\frac{1}{3}$	equivalent to $\frac{1}{4}$
odd denominator		
even denominator		

b) Are any of the boxes empty?

Why do you think this is?
Talk about your answer with a partner.

6 Find three ways to make the fractions equivalent.

b)

c)

7
Eva and Ron have a baguette each. The baguettes are the same size. Eva cuts her baguette into 8 equal pieces.

How many equal pieces has Ron cut his baguette into?

Ron has cut his baguette into \square equal pieces.

Fractions greater than 1

(1) Complete the sentences.

There are 7 fifths altogether.
7 fifths $=\square$ whole $+\square$ fifths

There are \square quarters altogether.
\square wholes +
\square quarter

Shade the bar models to represent the fractions.
Complete the number sentences.
a) $\frac{5}{3}$

b) $\frac{8}{3}$

c) $\frac{8}{5}$

3 Complete the statements.
a) $\frac{12}{2}=$ \square wholes
e) $\frac{15}{3}=$ \square wholes
b) $\frac{12}{4}=$ \square wholes
f) $\frac{15}{5}=$ \square wholes
c) $\frac{12}{6}=$ \square wholes
g) $\frac{15}{4}=\square$ wholes +
\square quarters
d) $\frac{12}{3}=$ \square wholes
h) $\frac{15}{2}=\square$ wholes + \square half

Whitney bakes 26 muffins. Muffins are packed in boxes of 4
a) How many boxes can Whitney fill?

Whitney can fill \square boxes.
b) How many more muffins does Whitney need to fill another box?
Whitney needs \square muffins to fill another box.

Explain how you know.
\qquad

How does writing $\frac{26}{4}$ help you to answer this?
(5) Write $<$, $>$ or $=$ to complete the statements.
a) 2 wholes and 3 quarters
 5 quarters
b) 2 wholes and 3 quarters
 15 quarters
c) 2 wholes and 3 sixths
 15 sixths
d) 2 wholes and 3 eighths
 15 eighths
e)

6) Complete the part-whole models.

c)

b)

Count in fractions

Complete the number lines.
a)

b)

(2) Complete the number lines.
a)

b)

c)

(3) Write the next three fractions in each sequence.
a) $\frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \square, \square, \square$
b) $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \square, \square, \square$
c) $\frac{1}{4}, \frac{3}{4}, 1 \frac{1}{4}, \square, \square, \square$
d) $4,3 \frac{1}{3}, 2 \frac{2}{3}$, \square
\square
\squareWhat is the missing fraction?
Give two possible answers.
a) $\frac{8}{3}, \frac{12}{3}, \frac{16}{3}, \frac{20}{3}, \square, \frac{28}{3}, \frac{32}{3}$

b) $\frac{8}{5}, \frac{12}{5}, \frac{16}{5}, \frac{20}{5}, \square, \frac{28}{5}, \frac{32}{5}$

c) $\frac{8}{7}, \frac{12}{7}, \frac{16}{7}, \frac{20}{7}, \square, \frac{28}{7}, \frac{32}{7}$
\square

