Equivalent fractions (2)

b) Shade $\frac{2}{4}$ of the bar model.

c) Shade $\frac{3}{6}$ of the bar model.

- d) What do you notice?
- e) Write another fraction that is equivalent to $\frac{1}{2}$

2 Shade $\frac{2}{3}$ of each bar model.

b)

c)

d) Use your answers to parts a), b) and c) to complete the equivalent fractions.

$$\frac{2}{3} = \frac{\boxed{}}{6} = \frac{8}{\boxed{}} = \frac{\boxed{}}{15}$$

Mo is finding equivalent fractions.

Do you agree with Mo? _____

Explain your answer.

Here is a number line.

a) What fraction is each shape pointing to?

b) A circle is halfway between the triangle and the square.

Draw the circle on the number line.

Do you agree with Eva? _____

Show how you worked this out.

Compare answers with a partner.

a)

Shade the bar models to represent the equivalent fractions.

<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>

$$\frac{1}{2} = \frac{3}{6}$$

b)
$$\frac{1}{2}$$
 $\frac{1}{2}$

$$\frac{1}{2} = \frac{5}{10}$$

c)
$$\frac{1}{5}$$
 $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

$$\frac{4}{5}=\frac{8}{10}$$

1	1	1	1
4	4	4	4

$$\frac{6}{8} = \frac{3}{4}$$

Use the fraction wall to complete the equivalent fractions.

	<u>- 1</u>	<u>1</u>			<u>1</u>	<u>l</u>	
- 4	<u>1</u> 4	1/4		- 2	<u>l</u> 1	1/4	
1/8	<u>1</u> 8	<u>1</u> 8	<u>1</u> 8	<u>1</u> 8	<u>1</u> 8	<u>1</u> 8	1/8

a)
$$\frac{1}{2} = \frac{4}{4}$$

c)
$$\frac{2}{4} = \frac{4}{1}$$

e)
$$\frac{1}{8} = \frac{3}{4}$$

b)
$$\frac{1}{2} = \frac{1}{8}$$

d)
$$\frac{2}{8} = \frac{4}{4}$$

f)
$$\frac{2}{2} = \frac{4}{4} = \frac{8}{8}$$

a) Label the fractions on the fraction wall.

1						

b) Use the fraction wall to complete the equivalent fractions.

$$\frac{1}{3} = \frac{\boxed{}}{6} = \frac{3}{\boxed{}}$$

$$\frac{\boxed{}}{3} = \frac{4}{\boxed{}} = \frac{6}{9}$$

$$\frac{3}{3} = \frac{6}{3} = \frac{9}{3} = 1$$

4		
	1	
	4	
\		J

Here is a fraction wall.

1/2						<u>1</u>	2		
1/3			1/3				1/3		
1/4		$\frac{1}{4}$ $\frac{1}{4}$				1/4			
<u>1</u> 5		<u>1</u> 5		_1	<u> </u>		<u>1</u> 5		<u>1</u> 5
<u>1</u> 6	-	<u>l</u>		1/6	<u>1</u> 6		1	<u> </u>	<u>1</u> 6

Is each statement true or false? Tick your answers.

a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$

True

False

b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$

c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$

d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$

e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$

f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.

Ask a partner to say if they are true or false.

5	Are the statements always, sometimes or never true?
	Circle your answer.

Draw a diagram to support your answer.

a) The greater the numerator, the greater the fraction.

always	sometimes	never

b) Fractions equivalent to one half have even numerators.

always	sometimes	never

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

always	sometimes	never

Equivalent fractions (2)

Shade the diagrams to help you complete the equivalent fractions.

The first one has been done for you.

$$\frac{1}{3} = \frac{2}{6}$$

$$\frac{1}{2} = \frac{}{}$$

Draw a diagram to show that $\frac{3}{4} = \frac{6}{8}$

Match the equivalent fractions.

Complete the equivalent fractions.

a)
$$\frac{1}{5} = \frac{10}{10}$$

d)
$$\frac{3}{10} = \frac{9}{10}$$

a)
$$\frac{1}{5} = \frac{}{10}$$
 d) $\frac{3}{10} = \frac{9}{}$ g) $\frac{8}{12} = \frac{2}{}$

b)
$$\frac{4}{5} = \frac{10}{10}$$

e)
$$\frac{6}{8} = \frac{3}{2}$$

b)
$$\frac{4}{5} = \frac{}{10}$$
 e) $\frac{6}{8} = \frac{3}{}$ h) $\frac{2}{} = \frac{10}{25}$

c)
$$\frac{3}{10} = \frac{6}{10}$$
 f) $\frac{8}{12} = \frac{1}{3}$ i) $\frac{1}{10} = \frac{4}{28}$

f)
$$\frac{8}{12} = \frac{}{3}$$

i)
$$\frac{1}{28}$$

5	

a) Write the fractions in the correct place on the sorting diagram.

8
24

3
12

		5_
	1	5

4
12

$$\frac{3}{9}$$
 $\frac{2}{1}$

4
16

	equivalent to $\frac{1}{3}$	equivalent to $\frac{1}{4}$
odd denominator		
even denominator		

b) Are any of the boxes empty?

Why do you think this is?

Talk about your answer with a partner.

Find three ways to make the fractions equivalent.

b)
$$\frac{1}{1} = \frac{4}{1}$$

Eva and Ron have a baguette each.

The baguettes are the same size.

Eva cuts her baguette into 8 equal pieces.

3 of my equal pieces are equal to 6 of Eva's.

How many equal pieces has Ron cut his baguette into?

Ron has cut his baguette into equal pieces.

Fractions greater than 1

Complete the sentences.

There are 7 fifths altogether.

7 fifths = whole + fifth

fifths altogether. There are

	fifths =		wholes +
--	----------	--	----------

fifths

quarters altogether. There are

quarters =		wholes +
------------	--	----------

	quarte
--	--------

Complete the number sentences.

a) $\frac{5}{3}$

$$\frac{5}{3} =$$
 whole + thirds =

b) $\frac{8}{3}$		

$$\frac{8}{3} =$$
 wholes + thirds =

c) $\frac{8}{5}$			

$$\frac{8}{5} =$$
 whole + fifths =

- Complete the statements.
 - a) $\frac{12}{2} = \boxed{ }$ wholes
- b) $\frac{12}{4}$ = wholes
- f) $\frac{15}{5} =$ wholes
- c) $\frac{12}{6} =$ wholes
- g) $\frac{15}{4}$ = wholes + quarters
- d) $\frac{12}{3}$ = wholes
- h) $\frac{15}{2}$ = wholes + half
- Whitney bakes 26 muffins.

Muffins are packed in boxes of 4

30

- Whitney can fill boxes.
- **b)** How many more muffins does Whitney need to fill another box?

Whitney needs muffins to fill another box.

Explain how you know.

How does writing $\frac{26}{4}$ help you to answer this?

- Write <, > or = to complete the statements.
 - a) 2 wholes and 3 quarters () 5 quarters
 - b) 2 wholes and 3 quarters () 15 quarters
 - c) 2 wholes and 3 sixths 15 sixths
 - d) 2 wholes and 3 eighths () 15 eighths
 - e) $\frac{15}{3}$ $\frac{15}{5}$
 - f) $\frac{15}{3}$ $\frac{20}{4}$
- 6 Complete the part-whole models.

Count in fractions

Complete the number lines.

a)

b)

Complete the number lines.

a)

b)

c)

- 3 Write the next three fractions in each sequence.
 - a) $\frac{1}{8}$, $\frac{2}{8}$, $\frac{3}{8}$,
 - b) $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$,
 - c) $\frac{1}{4}$, $\frac{3}{4}$, $1\frac{1}{4}$,
 - d) 4, $3\frac{1}{3}$, $2\frac{2}{3}$,
- What is the missing fraction?

Give two possible answers.

- a) $\frac{8}{3}$, $\frac{12}{3}$, $\frac{16}{3}$, $\frac{20}{3}$, $\frac{28}{3}$, $\frac{32}{3}$
- b) $\frac{8}{5}$, $\frac{12}{5}$, $\frac{16}{5}$, $\frac{20}{5}$, $\frac{28}{5}$, $\frac{32}{5}$
- c) $\frac{8}{7}$, $\frac{12}{7}$, $\frac{16}{7}$, $\frac{20}{7}$, $\frac{28}{7}$, $\frac{32}{7}$

5 Amir, Dexter and Dora are counting in fractions.

$$\frac{8}{10}$$
, $\frac{9}{10}$, $\frac{10}{10}$, $\frac{11}{10}$

The next fraction

is
$$\frac{12}{10}$$

Amir

The next fraction is $1\frac{2}{10}$

Dexter

00

The next fraction

is
$$1\frac{1}{5}$$

Dora

a) Who is correct?

Explain your answer.

b) Compare answers with a partner.

